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S

The linear step-up multiple testing procedure controls the false discovery rate at the
desired level q for independent and positively dependent test statistics. When all null
hypotheses are true, and the test statistics are independent and continuous, the bound is
sharp. When some of the null hypotheses are not true, the procedure is conservative by
a factor which is the proportion m0/m of the true null hypotheses among the hypotheses.
We provide a new two-stage procedure in which the linear step-up procedure is used in
stage one to estimate m0 , providing a new level q∞ which is used in the linear step-up
procedure in the second stage. We prove that a general form of the two-stage procedure
controls the false discovery rate at the desired level q. This framework enables us to study
analytically the properties of other procedures that exist in the literature. A simulation
study is presented that shows that two-stage adaptive procedures improve in power over
the original procedure, mainly because they provide tighter control of the false discovery
rate. We further study the performance of the current suggestions, some variations of the
procedures, and previous suggestions, in the case where the test statistics are positively
dependent, a case for which the original procedure controls the false discovery rate. In
the setting studied here the newly proposed two-stage procedure is the only one that
controls the false discovery rate. The procedures are illustrated with two examples of
biological importance.

Some key words: False discovery rate; Multiple testing; Two-stage procedure.

1. I

The traditional concern when testing m hypotheses simultaneously is to control the
familywise error rate, the probability of making any false discovery. The restrictiveness of
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the familywise error rate criterion leads to multiple testing procedures that are not powerful
in the sense that the probability of rejecting null hypotheses that are false must also be
small. At the other extreme lies the strategy of ignoring the multiplicity issue altogether,
and testing each hypothesis at level a. This is a popular approach which increases the
probability of rejecting null hypotheses that are false, but ignores the increased expected
number of type I errors.

The false discovery rate criterion was developed by Benjamini & Hochberg (1995) to
bridge these two extremes. The false discovery rate is the expectation of the proportion
of rejected true null hypotheses among the rejected hypotheses. When the null hypothesis
is true for all hypotheses, the false discovery rate and familywise error rate criteria are
equivalent. However, when there are some hypotheses for which the null hypotheses are
false, a procedure that controls the false discovery rate may reject many more such
hypotheses at the expense of a small proportion of erroneous rejections.

The linear step-up procedure, or so-called Benjamini & Hochberg procedure, controls
the false discovery rate at a desired level qm0/m when the test statistics are independent
(Benjamini & Hochberg, 1995) or positively dependent (Benjamini & Yekutieli, 2001).
Even though this procedure rejects false null hypotheses more frequently than procedures
that control the familywise error rate, if we knew m0 the procedure could be improved
by using q∞=qm/m0 , to achieve precisely the desired level q. In this paper we develop
and compare some adaptive false discovery rate controlling procedures that begin by
estimating m0 . In § 2, we recall the formal definition of the false discovery rate criterion,
the linear step-up procedure, and review the background for the problem at hand.

2. B

2·1. T he false discovery rate

Let H
0i

(i=1, . . . , m) be the tested null hypotheses. For i=1, . . . , m0 the null hypotheses
are true, and for the remaining m1=m−m0 the null hypotheses are false. Let V denote
the number of true null hypotheses that are erroneously rejected and let R be the total
number of hypotheses that are rejected. Now define the proportion of false discoveries by
Q=V /R if R>0 and Q=0 if R=0. The false discovery rate is =E(Q) (Benjamini &
Hochberg, 1995).

A few recent papers have illuminated the false discovery rate from different points of
view, namely asymptotic, Bayesian, empirical Bayes, as the limit of empirical processes
and in the context of penalised model selection; see Efron et al. (2001), Storey (2002),
Genovese & Wasserman (2004) and Abramovich et al. (2006). Some of the studies
emphasised variants of the false discovery rate, such as its conditional value given that
some discovery is made (Storey, 2002), or the distribution of the proportion of false
discoveries itself (Genovese & Wasserman, 2004). Procedures were developed for specific
settings (Troendle, 1999), and the applicability of existing procedures have been studied;
see for example Sarkar (2002).

The linear step-up procedure makes use of the m p-values, P= (P1 , . . . , Pm ). Let
p
(1)
∏ . . .∏p

(m)
be their ordered observed values.

D 1 (T he one-stage linear step-up procedure)
Step 1. L et k=max{i : p

(i)
∏ iq/m}.

Step 2. If such a k exists, reject the k hypotheses associated with p(1) , . . . , p(k) ; otherwise
do not reject any of the hypotheses.
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Benjamini & Hochberg (2000) provide a detailed historical review. For the purpose
of practical interpretation and flexibility in use, as well as for comparison with
other approaches, the results of the linear step-up procedure can also be reported in
terms of the -adjusted p-values. Formally, the -adjusted p-value of H

(i)
is

pLSU
(i)
=min{mp

(j)
/ j| j� i}. Thus the linear step-up procedure at level q is equivalent to

rejecting all hypotheses whose -adjusted p-value is at most q.
The linear step-up procedure is quite striking in its ability to control the false discovery

rate under independence at precisely qm0/m, regardless of the distributions of the test
statistics corresponding to false null hypotheses, when the distributions under the simple
null hypotheses are continuous.

Benjamini & Yekutieli (2001) studied the procedure under dependence. For some type
of positive dependence they showed that the above remains an upper bound. Even under
the most general dependence structure, where the false discovery rate is controlled merely
at level q(1+1/2+1/3+ . . .+1/m), it is again conservative by the same factor m0/m.

2·2. T he role of m0 in testing

Knowledge of m0 can therefore be very useful for improving upon the performance of
the  controlling procedure. If m0 were given to us by an ‘oracle’, the linear step-up
procedure with q∞=qm/m0 would control the false discovery rate at precisely the desired
level q in the independent and continuous case, and would then be more powerful in
rejecting hypotheses for which the alternative holds. In a well-defined asymptotic context,
Genovese & Wasserman (2002) showed it to be the best possible procedure in that it
minimises the expected proportion of the hypotheses for which the alternatives hold among
the nonrejected ones, minimising the false nondiscovery rate.

The factor m0/m plays a role in other settings as well. It is a ‘correct’ prior for a
full Bayesian analysis (Storey, 2002, 2003). Estimating this factor is also an important
ingredient in the empirical Bayes approach to multiplicity (Efron et al., 2001).

Even when we are controlling the familywise error rate in the frequentist approach,
knowledge of m0 is useful. Using a/m0 is a more powerful procedure than the standard
Bonferroni, which uses a/m, yet also controls the familywise error rate. Holm’s procedure
and Hochberg’s procedure have been similarly modified by Hochberg & Benjamini (1990)
to construct more powerful versions. It is thus interesting to note that estimation of m0
from the data is needed from the points of view of different schools of thought. Moreover,
estimating m0 becomes easier as more parameters are tested.

3. A 

Adaptive procedures first estimate the number of null hypotheses m0 , and then use this
estimate to revise a multiple test procedure. The following adaptive approach is based on
the linear step-up procedure.

D 2 (Generalised adaptive linear step-up procedure)
Step 1. Compute m@ 0 .
Step 2. If m@ 0=0 reject all hypotheses; otherwise, test the hypotheses using the linear

step-up procedure at level qm/m@ 0 .

Schweder & Spjøtvoll (1982) were the first to try to estimate m0 , albeit informally, from
the quantile plot of the p-values versus their ranks. This plot will tend to show linear
behaviour for the larger p-values which are more likely to correspond to true null



494 Y. B, A. M. K  D. Y

hypotheses. Thus one can inspect the plot and choose the largest k p-values for which the
behaviour seems linear, and estimate the slope of the line passing through them. Its
reciprocal was used as an estimate of m

0
, rejecting the hypotheses corresponding to the

m−m0 smallest p-values. Hochberg & Benjamini (1990) formalised the approach and
incorporated the estimate into the various procedures that control the familywise error
rate.

Benjamini & Hochberg (2000) incorporated their proposed estimator for m0 into the
generalised adaptive linear step-up procedure as follows.

D 3 (T he adaptive linear step-up procedure of Benjamini & Hochberg)
Step 1. Use the linear step-up procedure at level q, and if no hypothesis is rejected stop;

otherwise, proceed.
Step 2. Estimate m0 (k) by (m+1−k)/(1−p

(k)
).

Step 3. Starting with k=2 stop when for the first time m0 (k)>m0 (k−1).
Step 4. Estimate m@ 0=min{m0 (k), m} rounding up to the next highest integer.
Step 5. Use the linear step-up procedure with q*=qm/m@ 0 .

The choice in Step 2 was justified as follows. Let r(a)=#{p
(i)
∏a}. Then m−r(a) is

potentially the number of true null hypotheses except that m0a true null hypotheses are
expected to be among the r(a) rejected. Hence, solving m0jm−{r(a)−m0a} for m0 yields
m0j{m−r(a)}/(1−a). Use a=p

(k)
to obtain approximately m0 (k).

The adaptive procedure was shown by simulation to provide tighter control of the false
discovery rate than the linear step-up procedure. Not surprisingly, the simulation also
showed it to be much more powerful (Benjamini & Hochberg, 2000; Hsueh et al., 2003;
Black, 2004). It is of interest to note that this adaptive procedure was the original -
controlling procedure suggested by Y. Benjamini and Y. Hochberg in an unpublished Tel
Aviv University technical report. Later the authors used the conservative bound of 1 for
the m0/m factor, which enabled the proof of the -controlling property of the linear
step-up procedure.

An estimator of the above form evaluated at a single prespecified a quantile of p-values
P
(i)

, where i=am, is easier to study. Such an estimator for m0 is mentioned in passing in
Efron et al. (2001) and goes back to earlier versions of Storey (2002), although their
interest in the estimator was for different purposes. Using an estimate such as the median
of the {p

(i)
}, loosely denoted by p

(m/2)
within the linear step-up procedure, we obtain the

following procedure.

D 4 (Median adaptive linear step-up procedure)
Step 1. Estimate m0 by m@ 0= (m−m/2)/(1−p

(m/2)
).

Step 2. Use the linear step-up procedure with q*=qm/m@ 0 .

For estimating m0 , Storey (2002) and Storey & Tibshirani (2003a) recommended using
a fixed a, l in their notation, such as a=1

2
in the above. This yields the following procedure.

D 5 (T he adaptive linear step-up procedure with Storey’s estimator)
Step 1. L et r(l)=#{p

(i)
∏l}.

Step 2. Estimate m0 by m@ 0={m−r(l)}/(1−l).
Step 3. Use the linear step-up procedure with q*=qm/m@ 0 .

The above procedure, and the special case with l=1
2
, are also incorporated in recent

versions of  software (Storey & Tibshirani, 2003b) even though the p-values are
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estimated by resampling. Subsequently, in Storey et al. (2004), the above procedure was
modified by replacing {m−r(l)} by {m+1−r(l)} and further requiring that p

(i)
∏l for

a hypothesis to be rejected. These modifications stemmed from theoretical results in their
paper, in that they ensure -control in problems where a finite number of hypotheses
are tested.

Mosig et al. (2001) suggested a procedure involving an iterated stopping rule which
uses the number of p-values falling within some arbitrary cell boundaries over the range
(0, 1). The motivation is correct and similar in spirit to the above, but the procedure as
published is far from controlling the false discovery rate at the desired level; see § 6.

Other computer-intensive adaptive procedures based on resampling and bootstrapping
have also been suggested; see Yekutieli & Benjamini (1999), the resampling-based choice
of l in Storey (2002) and Storey et al. (2004) and the cubic spline fit in Storey & Tibshirani
(2003a).

4. T  - 

The idea underlying the two-stage procedure is that the value of m0 can be estimated
from the results of the one-stage procedure.

D 6 (T he two-stage linear step-up procedure,  )
Step 1. Use the linear step-up procedure at level q∞=q/(1+q). L et r1 be the number of

rejected hypotheses. If r1=0 do not reject any hypothesis and stop; if r1=m reject all m
hypotheses and stop; otherwise continue.

Step 2. L et m@ 0= (m−r1 ).
Step 3. Use the linear step-up procedure with q*=q∞m/m@ 0 .

The procedure can be motivated as follows. By definition m0∏m− (R−V ). The linear
step-up procedure used in the first stage ensures that E(V /R)∏qm0/m, so that V is
approximately less than or equal to qm0R/m. Hence, m0∏m− (R−qm0R/m), from which
we obtain

m
0
∏

m−R

1− (R/m)q
∏

m−R

1−q
∏ (m−R)(1+q). (1)

The right-most bound is the one implicitly used in the above procedure. In § 5 it is
proven that this two-stage procedure has a false discovery rate that does not exceed q for
independent test statistics.

This two-stage procedure uses the number rejected at the first stage to estimate m0 , it
controls the false discovery rate and it necessarily increases power. Hence, we may extend
this approach using m−r2 at the third stage, and so on. In the multiple-stage linear
step-up procedure, the steps of the two-stage linear step-up procedure are repeated as
long as more hypotheses are rejected. This procedure can also be expressed in an elegant
way using the sequence of constants ql/(m+1− j) at each stage. However, using (1+q )
in the denominator does not suffice, since the effective level used is q*=qj/(m+1− j),
which may be bigger than q. This suggests inflating the cut-offs to

q q

1+qj/(m+1− j )r l

m+1− j
(2)

to obtain the following procedure.
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D 7 (T he multiple-stage linear step-up procedure)
Step 1. L et k=max{i : for all j∏ i there exists l� j so that p

(l)
∏ql/{m+1− j (1−q)}}.

Step 2. If such a k exists, reject the k hypotheses associated with p(1) , . . . , p(k) ; otherwise
reject no hypothesis.

The last procedure has an interesting internal-consistency property. The number of
hypotheses tested minus the number rejected, less the proportion q erroneously rejected,
is also the number used in the denominator of the linear step-up procedure as the estimator
of m0 . A simpler, more conservative procedure enjoying the same property is to require
l= j in the above definition, resulting in a multiple-stage step-down procedure.

5. A 

In this section we derive an expression for the upper bound of the false discovery
rate of the generalised adaptive linear step-up procedure for independently distributed
test statistics. The distributions of the test statistics may be discrete, in which case the
distributions of the p-values under the null hypotheses should be stochastically larger than
uniform as usual. The estimator m@ 0 of m0 is assumed to be an increasing function of each
of the components of P.

It was shown in Benjamini & Yekutieli (2001) that the false discovery rate of any
multiple comparison procedure can be expressed as

= ∑
m
0

i=1
∑
m

k=1

1

k
pr{k hypotheses are rejected one of which is H

0i
}

=m
0
∑
m

k=1

1

k
pr{k hypotheses are rejected one of which is H

01
}.

The second equality follows as the problem is exchangeable in the p-values corresponding
to the m0 true null hypotheses. Let P01 be the p-value associated with H01 . Note that there
must be at least one hypothesis that is null, that is m0�1 because otherwise =0.
Let P(1) be the vector of p-values corresponding to the m−1 hypotheses excluding H01 .
Conditioning on P(1) we can express  as

=m
0
E
P(1)

Q(P(1) ), (3)

where Q(P(1) ) is defined by

Q(P(1) )= ∑
m

k=1

1

k
pr
P
01
|P(1)

{k hypotheses are rejected one of which is H
01

}.

For each value of P(1), let r(P01 ) denote the number of hypotheses that are rejected, as a
function of P01 , and let i(P01 ) be the indicator that H01 is rejected as a function of P01 .
Then

Q(P(1) )=Eq i(P01 )r(P
01

)
|P(1)r=P i( p)

r( p)
dm
01

( p),
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where, by the assumed independence, we can take m01 to be the marginal distribution
of P01 . In the continuous case, m01 is just the uniform distribution on [0, 1] and, in the
discrete case, it is necessarily stochastically larger than the uniform.

We make two claims, first that r( p) is a nonincreasing function, and secondly that i( p)
takes the form 1

[0,p*]
, where p*¬p*(P(1) ) satisfies p*∏qr( p*)/m@ 0 ( p*). If these claims are

true, then

Q(P(1) )=P i( p)

r( p)
dm
01

( p)∏
p*

r( p*)
∏

q

m@
0
( p*)

. (4)

This follows immediately because pr(P01∏p*)∏p*. The bound on  follows, in the
form

∏qE
P(1)q m

0
m@
0
( p*)r . (5)

To prove the claims, note that, for any P(1) and a P01 such that i(P01 )=1, that is H01
is rejected, there are exactly r(P01 ) p-values below qr(P01 )/m@ 0 (P01 ), and for any k>r(P01 )
there are strictly fewer than k p-values below qk/m@ 0 (P01 ), because otherwise r(P01 ) would
be larger by construction. Since m@ 0 (P01 ) is increasing in P01 , as P01 increases all the critical
values qk/m@ 0 (P01 ) decrease; hence, the number of p-values below each qk/m@ 0 (P01 ) cannot
increase. It follows that r(P01 ) cannot increase, which proves the first claim. For the second
claim, note that i(P01 )=1 as long as P01∏qr(P01 )/m@ 0 (P01 ).

To prove control of the false discovery rate for a generalised adaptive linear step-up
procedure we need to evaluate the right-hand side of (5), which is an expectation over
m−1 p-values, m1 of which are generated according to the distribution of alternative
hypothesis p-values and m0−1 are independent and identically distributed Un[0, 1].
Since m@ 0 is stochastically larger as p-values have stochastically larger distributions, the
right-hand side of (5) is maximised when the m1 p-values corresponding to H

1i
are all

zero with probability one. It is interesting to note that, although setting these p-values
to 0 maximises the bound in (5), this does not necessarily lead to the maximum value of
 in (3).

We will derive bounds for the false discovery rates of some of the two-stage procedures
discussed earlier. The following is necessary in this regard.

L 1. If Y~Bi(k−1, p) then E{1/(Y+1)}<1/(kp).

Proof. Elementary calculations give

E{1/(Y+1)}=
1

kp
{1− (1−p)k}∏

1

kp
. %

T 1. W hen the test statistics are independent the two-stage procedure controls
the false discovery rate at level q.

Proof. Recall that, in a two-stage procedure, the first stage is a linear step-up procedure
at level q∞¬q/(1+q), r1 is the number of hypotheses rejected at stage 1, and m@ 0 equals
m−r1 . Then m@ 0 can only be one of two values m@ 0 (0) or m@ 0 (1). For P01∏r1q∞/m, H01
is rejected at both stages of the two-stage procedure, and m@ 0=m@ 0 (0). For P01>r1q∞/m,
H01 is not rejected at the first stage, and hence m@ 0=m@ 0 (1); however, as long as
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P01∏r(P01 )q∞/m@ 0 (1), H01 is rejected at the second stage, and thus m@ 0 ( p*)=m@ 0 (1) and,
according to (4),

Q(P(1) )∏
q∞

m@
0
(1)

. (6)

There is just one anomaly. If m@ 0 (1)=m then for P01>r1q∞/m the second stage of the
testing procedure is identical to the first stage; thus H01 is no longer rejected and
m@ 0 ( p*)=m@ 0 (0). However, note that, as p*=r1q∞/m and r1∏r( p*), from the first inequality
in (4) we have

Q(P(1) )∏
p*

r( p*)
∏

r
1
q∞/m
r
1
=

q∞
m
=

q∞
m@
0
(1)

.

Hence inequality (6) is still satisfied.
As m@ 0 (1) is stochastically larger than Y+1, where Y~Bi{m0−1, 1−q/(q+1)}, if q is

replaced with q∞=q/(q+1) in Lemma 1, inequality (6) yields

∏m
0
E
P(1)

Q(P(1) )∏
q

1+q
E
P(1)

m
0

Y+1
∏

q

1+q

m
0

m
0
{1/(1+q)}

=q. %

A proof of the above was given in D. Yekutieli’s 2002 Ph.D. thesis from Tel Aviv
University. The quantile-based estimator of m0 is m@ 0= (m+1−k)/(1−P

(k)
) for an

arbitrary k (1∏k∏m). This is the estimator used in the adaptive linear step-up procedure
of Benjamini & Hochberg, albeit at a prespecified quantile. Using this estimator in the
generalised adaptive linear step-up procedure leads to the following theorem.

T 2. W hen the test statistics are independent the quantile adaptive linear step-up
procedure controls the false discovery rate at level q.

Proof. If k∏m1 then according to (5) the false discovery rate of this two-stage procedure
is

∏E
P(1)

qm
0

(m+1−k)/(1−P
(k)

)
∏

qm
0

(m
0
+1)

E
P(1)

(1−P
(k)

)∏q.

Assume now that m1<k. We will first compute the expected value of 1/m@ 0 (0). Since
P01=0, in addition to P01 there are k−1 p-values less than P

(k)
. The number of true null

p-values less than or equal to P
(k)

, not counting P01 , is at least k−m1−1. Hence the
distribution of P

(k)
is stochastically greater than the k−m1−1 ordered p-values out of

m0−1 p-values that are independent Un[0, 1). Therefore, with P01=0,

E
P(1)

P
(k)
∏

(k−m
1
−1)+1

(m
0
−1)+1

=
k−m

1
m
0

.

Thus

E
P(1)

1

m@
0
(0)
∏A1− k−m

1
m
0
BN(m+1−k)<1/m

0
.

Finally, as m@ ( p*)�m@ 0 (0), returning to (5) we have

∏E
P(1)

qm
0

m@
0
(0)
<q. %
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As an illustration we consider an upper bound for the adaptive linear step-up procedure
with Storey’s estimator. The definition of m@ 0 in Storey (2002) is m@ 0={m−r(l)}/(1−l)=
#{P
i
>l}/(1−l). In this case, as P01 varies, there are two distinct values of m@ 0 :

m@
0
=q#{P(1)>l}/(1−l), if P

01
∏l,

(#{P(1)>l}+1)/(1−l), if P
01
>l.

When used within a generalised adaptive linear step-up procedure, if p*∏l, then m@ 0 ( p*)
is stochastically greater than W /(1−l), where W is Bi(m0−1, 1−l). This causes a
technical problem, as E{1/m@ 0 ( p*)} is infinite because there is a nonzero probability, albeit
very small for large m, that W is zero.

In Storey et al. (2004) two modifications were suggested to the original definition of m@ 0
when used in testing. First, no hypothesis is rejected with p-value>l. Secondly, m@ 0 is
modified to (#{P

i
>l}+1)/(1−l). With the second modification, (5) and Lemma 1 imply

that

∏
qm
0

m
0
(1−l)/(1−l)

=q. (7)

Remark 1. Lemma 1 showed that E{1/(Y+1)}={1− (1−p)k}/kp, where in our case
k=m0 and p=1−l. Substituting this result instead of its bound into (5) yields
∏ (1−lm

0
)q, which agrees with the bound in Storey et al. (2004).

Remark 2. For illustration, we computed the bounds on  for the original version
based on the above analysis in two cases. For q=0·05 and l=0·05, in which case the
condition m�l/{q(1−l)} holds for all m, we obtain the following bounds: when m=20,
∏0·054; when m=100, ∏0·051; and, when m=500, ∏0·05. For q=0·05 and
l=0·5, the results are as follows: when m=20, ∏0·075; when m=100, ∏0·058;
and, when m=500, ∏0·052. Thus, in this case, as long as m is in the hundreds the
modifications are essential.

6. S 

6·1. T he procedures to be compared

A simulation study was performed to compare the -control and the power of various
adaptive procedures for controlling the familywise error rate and the false discovery rate.
The seven procedures that were investigated in some detail can be roughly divided into
two types, namely newly suggested adaptive procedures, numbered 1–3 below, and
previously suggested adaptive -controlling procedures, numbered 4–7 below. Three
other procedures, numbered 8–10, serve as benchmarks for comparing performance.

Procedure 1. The two-stage linear step-up procedure, denoted by  in the tables; see
Definition 6. By Theorem 1, this procedure controls the false discovery rate at level q.

Procedure 2. The modified two-stage procedure, denoted by -. This procedure
makes use of q in stage 1, and q∞=q(1+q) in stage 2. Even though the proof requires the
use of q/(1+q) at both stages, we explore this procedure as well since it is more natural
to use q at the first stage.

Procedure 3. The multiple-stage linear step-up procedure, denoted by ; see
Definition 7.
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Procedure 4. The adaptive linear step-up procedure of Benjamini & Hochberg (2000),
denoted by ; see Definition 3.

Procedure 5. The adaptive linear step-up procedure with Storey’s estimator, denoted by
- ; see Definition 5 with l=1

2
.

Procedure 6. The adaptive linear step-up procedure as modified in Storey et al. (2004),
denoted by --.

Procedure 7. The median adaptive linear step-up procedure, denoted by -.

Procedure 8. The adaptive Hochberg procedure of Hochberg & Benjamini (1990),
denoted by -. This adaptive step-up procedure is designed to control the familywise
error rate.

Procedure 9. The linear step-up procedure, denoted by ; see Definition 1. This
nonadaptive procedure controls the false discovery rate at level m0/m.

Procedure 10. The linear step-up procedure at level qm/m0 , denoted by .

The ‘Oracle’ procedure, number 10 above, which uses m0/m to control the false discovery
rate at the exact level q, is obviously not implementable in practice as m0 is unknown. It
serves as a benchmark against which other procedures can be compared. It also serves as
a variance-reduction method in the simulation study under independence: a large reduction
in variance is achieved by comparing the estimated difference in false discovery rates
achieved by the procedure in question and that of procedure 10 to zero.

In the first part of the study, the number of tests m was set at m=4, 8, 16, 32, 64, 128,
256 and 512. The fraction of the false null hypotheses was 0%, 25%, 50%, 75% and
100%. The P-values were generated in the following way. First, let, Z0 , Z1 , . . . , Zm be
independent and identically distributed N (0, 1). Next, let Y

i
=√rZ0+√(1−r)Z

i
−m
i
,

for i=1, . . . , m, and let P
i
=1−W (Y

i
). We used r=0, 0·1, 0·25, 0·5 and 0·75, with r=0

corresponding to independence. The values of m
i

are zero for i=1, . . . , m0 , the m0
hypotheses that are null. In one case, we let m

i
=5 for i=m0+1, . . . , m. This leads to

P
i
j0 for hypotheses that are not null; this is referred to as the ‘all at 5’ case. In the second

case, the value of m
i
was m

i
= i for i=1, 2, 3, 4. This cycle was repeated to produce the

desired m1 values under H1 . This is referred to as the ‘1 2 3 4’ configuration. The resulting
p-values under H1 are clearly less extreme than those in the first case.

We also tested a few more procedures. The multiple-stage step-down procedure, a
variation on Procedure 3, showed performance very similar in terms of -control and
was, as expected, slightly less powerful. The advantage of the step-down version is that
only the extreme p-values are needed. The procedure of Mosig et al. (2001) did not control
the false discovery rate at the desired level, the false discovery rate often exceeding 0·5.
However, a slight modification of this procedure is similar to a modification of the 
procedure and performed similarly. The modified two-stage Procedure 2 is very similar
to Procedure 1. It has the advantage that it is run at the first stage at level q. However,
it can happen that at the first stage a hypothesis is rejected and at the second stage it is
not. This is rare, and occurs only for large m and m0 close to m.

The simulation results are based on 10 000 replications. The standard error of the
estimated false discovery rate is of the order of 0·002 for all the procedures. As mentioned
above, the standard error of the performance of a procedure relative to that of the Oracle
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Table 1: Simulation study with independent test statistics. Estimated values of  for
selected values m0 and m. T he value for the Oracle is set at its expected value 0·05, and the
others are estimated from the diVerences. T he standard errors are less than 0·002 in all cases

m0/m=1 m0/m=0·75 m0/m=0·50
m=16 m=64 m=256 m=16 m=64 m=256 m=16 m=64 m=256

 0·048 0·048 0·047 0·048 0·048 0·048 0·049 0·049 0·049
- 0·050 0·049 0·047 0·048 0·048 0·048 0·049 0·049 0·049
 0·050 0·050 0·050 0·050 0·050 0·050 0·050 0·050 0·050
 0·050 0·050 0·050 0·048 0·049 0·050 0·047 0·049 0·049
- 0·057 0·051 0·050 0·061 0·052 0·051 0·070 0·053 0·051
-- 0·049 0·050 0·050 0·050 0·050 0·050 0·050 0·050 0·050
- 0·053 0·050 0·050 0·053 0·051 0·050 0·049 0·049 0·050
- 0·050 0·050 0·050 0·025 0·008 0·003 0·012 0·001 0·000
 0·050 0·050 0·050 0·038 0·037 0·038 0·025 0·025 0·025
 0·050 0·050 0·050 0·050 0·050 0·050 0·050 0·050 0·050

is even smaller. In Table 1 we used the fact that the expectation of the false discovery rate
is exactly 0·05 to estimate the false discovery rate for the other procedures from the
difference.

6·2. Independent test statistics

The results of the -control under independence for the 10 procedures were higher
for the ‘all at 5’ case than for the ‘1 2 3 4’ case described above. Results are given in Table 1
for some of the configurations. Note that all procedures except - and - control
the false discovery rate at levels very close to yet below 0·05 at all configurations. The
results for the stated two are above 0·05 for smaller m. The modification in Storey et al.
(2004) solves the problem for -. In both cases the values are very close to the
theoretical upper bounds derived in § 5. The fact that the level of false discovery rate
approaches 0·05 as m increases supports the theoretical result in Genovese & Wasserman
(2004) that, asymptotically in m, it controls the false discovery rate.

For the - procedure the overshoot is smaller and it decreases faster. By m=64
it is within simulation-noise level. The source of this problem is the fact that -
uses (m−k) in the numerator, while the theorem that the false discovery rate is controlled
is for the estimator with (m+1−k). The ratio of the two decreases as m increases. It is
important to emphasise that, in the three procedures -, -- and -, unlike
in the other two-stage procedures, there is no restriction that m@ 0∏m. It is important
not to add such a requirement in the implementation step, because it will harm the
-controlling properties. In the other procedures m@ 0 cannot exceed m.

Power comparisons are made at the more realistic configuration of ‘1 2 3 4’; see
Table 2. The results are only reported for the procedures that control the false discovery
rate. The power of each procedure is divided by the power for the oracle to yield an
efficiency-like figure. For example, consider the configuration with m0=32 and m=64,
where all procedures control the false discovery rate. The regular linear step-up has power
of 0·873, and all -controlling adaptive procedures raise the power to within the range
of 0·924 to 0·977. It is clearly worth the extra effort to take the second stage in the two-
stage procedure when m0/m is as large as 1

2
. Table 2 shows that -- is most powerful

in all situations. When m0/m is small  is almost as good. When all hypotheses are
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Table 2: Simulation study with independent test statistics. Power relative to the Oracle
procedure for selected values of m0 and m

m0/m=0·75 m0/m=0·50 m0/m=0·25
m=16 m=64 m=256 m=16 m=64 m=256 m=16 m=64 m=256

 0·956 0·958 0·959 0·917 0·924 0·926 0·862 0·865 0·865
- 0·957 0·958 0·959 0·918 0·925 0·927 0·863 0·866 0·866
 0·964 0·967 0·969 0·927 0·935 0·938 0·878 0·888 0·890
 0·968 0·976 0·975 0·946 0·953 0·947 0·906 0·917 0·900
-- 0·973 0·989 0·993 0·958 0·977 0·982 0·923 0·949 0·956
 0·945 0·942 0·941 0·874 0·873 0·874 0·781 0·777 0·775

false and m increases  takes second place. In summary, the real gain seems to be in
using a two-stage procedure. Which of these two-stage procedures one uses is of lesser
significance.

6·3. Positively dependent test statistics

If m0 is known, the linear step-up procedure controls the false discovery rate even under
positive dependence, as expressed in Benjamini & Yekutieli (2001). Furthermore, if m0 is
estimated independently of the p-values used in , if for example it is estimated from a
different sample, then, by simply conditioning, we have that ∏qE(m0/m@ 0 ). Thus if
E(m0/m@ 0 )∏1 the two-stage procedure controls the false discovery rate.

To see how the bias and variance of m@ 0 affects E(m0/m@ 0 ) a straightforward Taylor series
expression yields E(m0/m@ 0 )=1−bias/m0+bias2/m2

0
+variance/m2

0
. From this we can see

that, if the bias is positive, then that helps to meet the condition E(m0/m@ 0 )∏1. If the bias
is negligible, then the variance of the estimator plays a key role. For independent tests,
the variance of the estimator is of order m0 so that the variance term goes to zero. For
dependent tests, the variance can also be of order m2

0
, in which case the size of the variance

can have a large effect.
When the estimate of m0 is independent of the p-values, even when the p-values

themselves are dependent, the above argument led to an inequality, which implied that it
is sufficient to show that E(m0/m@ 0 )∏1 in order to obtain control of the false discovery
rate. Once the same set of dependent p-values is used in both stages, two issues arise: the
inequality on the bound might not hold, and furthermore E(Q|m@ 0 )∏ (m/a)(m0q/m)=m0q/a
need not hold. It is difficult to study analytically the combined effect that may cause the
false discovery rate of the two-stage procedure to be higher than expected, and we therefore
resort to a simulation study.

The simulation study allows us to explore the effect of constant positive dependence
between the test statistics on the level of the false discovery rate achieved by the adaptive
procedures. Figure 1 presents these results for r=0·1 and 0·5 in comparison to r=0.
Obviously the Oracle and  do control the false discovery rate, as follows from the
theory in Benjamini & Yekutieli (2001), even though now at a level that is too low. The
two-stage procedures control the false discovery rate well, below but close to the nominal
level. All other procedures fail. The  procedure controls the false discovery rate when
the correlation is low, but fails at higher correlations. The - procedure does better
when m becomes larger. The value for the -- procedure is sometimes more than
twice the declared false discovery rate.
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Fig. 1: Simulation study. Estimated  values for m=16, . . . , 512 and r=0, 0·1, and 0·5. Results for
procedure , solid line; , dotted line; , dotted-dashed; , dashed; --, dashed triple-dotted;

, short-dash long-dash.

Since many applications of the false discovery rate and theoretical results involve a
large number of tests, simulations were also conducted for m=5000, 10 000 and 15 000.
The p-values were generated in the same way except that the values of m were chosen to
be 5i/(m−m0 ) for i=1, . . . , m−m0 . In addition, the values 0, 0·01, 0·05 and 0·10 were
used for the fraction of false null hypotheses. The results that appear in Fig. 2 indicate
that it does not seem that the false discovery rate level gets closer to 0·05 as m increases
for the -- procedure.

How can this difference be explained? Figure 3 presents the distribution of the estimators
of m0 that are used in the  procedure,  and -- procedures, both under
independence and under r=0·5. The figure shows that variability for -- relative to
that for either  or  is only about two in the independence case. In the dependent
case, however, this ratio increases to about ten; note that the biases are comparable. This
results in -- overshooting the nominal 0·05 false discovery rate level even for large m,
stabilising at a level of 0·08, as is evident from Fig. 2. Note from Fig. 3 that more than a
quarter of m0 estimates obtained by -- are above the maximal possible value of
m=64. Thus the deviation from the desired false discovery rate will be even greater if in
practice min(m@ 0 , m) is used instead of m@ 0 .
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Fig. 2: Simulation study. Estimated  values for m=5000, 10 000 and 15 000 and r=0, 0·1 and 0·25.
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Fig. 3: The simulated distribution of the estimators m@ 0 used in the ,
 and -- adaptive procedures for estimating the number of true
hypotheses with independent and positively correlated statistics for the case
of m0=48 and m=64. Each box displays the median and quartiles as usual.
The whiskers extend to the 5% and the 95% quantiles. The circles are located

at the extremes, i.e. the 0·01% and 99·99% percentiles.



505Adaptive false discovery rate

7. E

Example 1: Multiple endpoints analysis. Multiple endpoints analysis in clinical trials is
one of the most commonly encountered multiplicity problems in medical research. This
example on multiple endpoints illustrates the various procedures and shows the increased
number of rejections when m0 is estimated and accounted for as in our procedure. Since
the data represent multiple measurements on the same individual, an individual’s innate
level can be viewed as latent. The assumption of constant positive dependence is arguably
plausible, at least approximately. For the specific multiple problem described in detail in
Benjamini & Hochberg (1995), the significance of the treatment effect on each of the 15
endpoints is given by the ordered p

(i)
’s: 0·0001, 0·0004, 0·0019, 0·0095, 0·0201, 0·0278,

0·0298, 0·0344, 0·0459, 0·3240, 0·4262, 0·5719, 0·6528, 0·7590 and 1·000. Four hypotheses
were rejected using the single linear step-up procedure at level 0·05. Four were also rejected
at the first stage of the two-stage procedure run at level 0·05/1·05. At the second stage the
linear step-up procedure is used at level (0·05/1·05)×15/(15−4)=0·06494, resulting in
the rejection of the eight hypotheses whose p-values are less than or equal to 0·0344.

The multiple-stage procedure continues with the linear step-up procedure at level
0·0893, which is obtained from 0·0515/{15+1−8(1−0·05)}. In this case, the ninth
hypothesis with p-value of 0·0459∏0·0893× 9

15
is also rejected. Interestingly all hypotheses

with p-values less than 0·05 were rejected, as if no correction had been made.
Another interesting observation is that all adaptive procedures considered here rejected

either 8 or 9 hypotheses; the procedures ,  and - resulted in 9 rejections.
However, since positive dependence may be present among the measured endpoints, taking
the more conservative finding of the two-stage procedure is recommended.

Example 2: Quantitative trait loci analysis using false discovery rate. Genetic researchers
considered control of the false discovery rate in this important biological area (Weller
et al., 1998), and Mosig et al. (2001) pioneered the use of adaptive procedures in the
context of quantitative trait loci analysis of milk production in cattle, although without
considering analysis of this particular example (Mosig et al., 2001). However, they did
not consider the theoretical properties of their procedure. The purpose of their analysis
is to identify regions on the chromosomes containing genes which affect the level of some
quantitative property of the milk that a cow produces, such as volume, fat content or
protein content. This kind of analysis is based on testing the statistical linkage between
genetic markers on the chromosomes and the quantity of interest. Since molecular genetic
markers can now be identified on a very dense map, the issue of multiple testing and its
increased type I error probabilty is of fundamental concern. Lander & Kruglyak (1995)
discuss this issue and set out guidelines that emphasise the genome-wise control of the
familywise error rate, and Benjamini & Yekutieli (2005) established the appropriateness
of the linear step-up procedure for this purpose. Their result relies on the positive
regression dependence structure within chromosomes, inherent in the genetic problem.

Using the linear step-up procedure on single-site data, Mosig et al. (2001) identified
34 markers, out of a total number of 138, to be significant at the 0·05 level of false discovery
rate. Using their original adaptive two-stage procedure they identified 8 additional
significant markers. However, as was shown here, this procedure need not control the
false discovery rate.

With the new two-stage procedure, the same 34 markers were rejected at the first stage
at the 0·05/1·05 level. At the second stage the linear step-up procedure is used at level
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q*=0·05
1·05
×138
104
=0·063. This increase identified a total of 37 markers, that is more than 34,

but fewer than the 42 found by Mosig et al. (2001).

8. D

Benjamini & Hochberg (2000) state, regarding adaptive procedures, that ‘in cases where
most of the hypotheses are far from being true there is hardly any penalty due to the
simultaneous testing of many hypotheses’. As carefully analysed and explained by Black
(2004), introducing the adaptive component into the linear step-up procedure is also the
reason for the power advantage of the direct approach to false discovery rate of Storey
et al. (2004). It is demonstrated here that the differences in power among the various
adaptive procedures are much smaller than the differences among all adaptive procedures
and the linear step-up procedure. Adaptive procedures that control familywise error have
even less power. Of course these advantages are not realised when m0/m is close to 1.

The results of the simulation study raise interesting issues. Some procedures are more
sensitive to the nature of the correlation structure, equal positive correlations that we
impose in our simulation study, and other approaches, most notably our new procedure,
seem to perform well even in the correlated case. In practice, tests tend to be correlated.
Understanding how different procedures that perform equally well for independent tests
behave in correlated environments that reflect important applications is critical, but
remains to be investigated.
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